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ABSTRACT
Visual contexts often help to recognize named entities more pre-
cisely in short texts such as tweets or snapchat. For example, one
can identify “Charlie” as a name of a dog according to the user
posts. Previous works on multimodal named entity recognition
ignore the corresponding relations of visual objects and entities.
Visual objects are considered as fine-grained image representations.
For a sentence with multiple entity types, objects of the relevant
image can be utilized to capture different entity information. In
this paper, we propose a neural network which combines object-
level image information and character-level text information to
predict entities. Vision and language are bridged by leveraging
object labels as embeddings, and a dense co-attention mechanism
is introduced for fine-grained interactions. Experimental results
in Twitter dataset demonstrate that our method outperforms the
state-of-the-art methods.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies→ Information extrac-
tion.
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1 INTRODUCTION
Named entity recognition (NER) is a task which locates and clas-
sifies named entities into predefined categories such as location,
organization and person name. Previous works on NER either rely
on hand-crafted features [8, 14] or leverage neural networks on
distributed representation of texts [15, 17]. And most works on NER
concern about the newswire domain where language expressions
are formal and complete [1, 26].

Unlike newswire domain, texts in social media provide abundant
user-generated information for understanding events, opinions
and preferences of groups and individuals. Despite the impressive
progress for newswire domain entity recognition, the methods
there exhibit the following limitations for social media posts:

• Texts in social media are usually short, which is difficult
in providing adequate information for determining entity
types.
• Texts in social media are usually ambiguous because they
contain slangs and polysemies.
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Figure 1: An Example Multimodal Social Media Post from
Twitter, where “Alibaba” is the Name of a Person Rather
Than an Organization.

Such limitations pose major challenges in social media NER. On
the other hand, in social media people like to share their life with
texts and relevant images. Such visual information can assist ex-
tracting entities in the named entity recognition task. For example,
in Figure 1, the term “Alibaba” appearing in tweets could be rec-
ognized as multiple types of entities such as “Organization” and
“Person”. Without the help of image information, identifying it in a
correct entity category is non-trivial and difficult.

Language and vision provide complementary information. Mean-
while, an image related to a sentence can have different visual
objects related to different entities in the sentence. For example,
in Figure 2, the sentence contains two entities with two different
types: one PER entity and one MISC entity. The detected visual
object with label “person” is related to the PER entity “Neil Patrick
Harris”. The objects “tie, trophy” which are most relevant to awards
are corresponding to the MISC entity “Oscar”. Recent works on
multimodal NER extract the features of the whole image which
have only one semantic label [16, 18, 28]. Their methods simply
combine the image features with the representation of each word
in sentences. In such a case, their methods only reflect the relations
between the whole image (rather than objects) and only one entity.
The corresponding relations of multiple visual objects and different
entities are ignored. As a result, the visual features of the whole
image with only one semantic label may mislead their models to
identify different type of entities into the same type. For example,
the two entities “Neil Patrick Harris” (PER) and “Oscars” (MISC) in
Figure 2 will be both identified into the same PER category incor-
rectly. To address this, it is necessary to leverage different visual
objects (i.e., object-level features) to assist extracting entities with
different types.

Since features of different modalities (vision and language) usu-
ally have inconsistent distribution and representation, simple con-
catenation [16, 18, 28] of their features may bring semantic disparity.
The labels of visual objects have semantics of images and at the
same time, they are in the same vector space as texts. Therefore,
we consider to utilize the visual object labels and convert them into
the embedding vector space as texts, so as to bridges the vision and
language.

Figure 2: An Example of the Twitter Dataset. The Visual Ob-
ject with Label “person” will Lead to the Detection of “Neil
Patrick Harris” as PER Category, and Objects with “tie, tro-
phy” will Lead to the Extraction of “Oscars” as the Name of
an Award (MISC).

In this paper, we propose a neural network which incorporates
object-level visual information with textual representations for
NER in social media posts. We use a pre-trained object detector [10]
to extract the visual objects. To address the problem of semantic
disparity of different modality, we transform the object labels into
word embeddings. Considering that previous co-attention models
[28] only learn the correlation between each image and each text,
which ignores the inner connections of visual objects or textual
entities, we extend them into a dense co-attention network (DCAN).
In particular, DCAN models the self-attention of objects or entities,
as well as the guided attention between objects and entities. Finally,
the fusion features of visual objects and textual entities are sent to
a CRF layer to output entity labels.

The main contributions of this paper can be summarized as
follows:

• We propose a multimodal representation which combines
object-level visual information and textual representations
for NER in social media posts. Our method considers the
corresponding relations of visual objects and textual entities,
while previous works only reflect the relation of the whole
image and only one entity. Object-level features contribute
to extract entities with different types.
• We introduce a dense co-attention network to fuse the visual
and textual representations. Our dense co-attention module
canmodel the correlations between visual objects and textual
entities, as well as inner connections of objects or entities,
which helps extract entities precisely.
• We conduct experiments on the multimodal social media
NER dataset, and the experimental results demonstrate that
our model outperforms previous state-of-the-art methods.
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2 RELATEDWORK
2.1 NER in social media
NER has drawn attention of NLP researchers because several down-
stream NLP tasks rely on it [9, 29]. Neural models have been pro-
posed and achieve state-of-the-art performance in variable datasets
and domains. Recently, NER in social media domain has raised
concerns since texts in social media are explosively growing and
provide abundant user-generated information for various applica-
tions such as the identification of natural disasters [22, 24], cyber
attack detection [12, 21] and breaking news aggregation [19]. Rit-
ter et al. [20] propose a T-NER system which uses LabeledLDA
to exploit Freebase dictionaries as a source of distant supervision.
However, their method only identifies whether a span is an entity
or not. Moon et al. [18] and Zhang et al. [28] leverage the visual
information to help extract entities. However, image information is
not fully exploited in their methods for the reason that one single
image vector trained with only one label cannot assist recognizing
multiple entities. Our model introduces object level representa-
tions, for focusing the attention on effective regions in images and
entity-relevant objects can help extract the entities precisely.

2.2 Multimodal Representation
A lot of research has shown that combining textual and visual rep-
resentation as multimodal representations can improve the perfor-
mance of semantic tasks [4, 6]. Based on current literature, posterior
combination strategies are most commonly used. The simplest way
of combining visual and textual representations is concatenation
[5, 13]. However, simple concatenation may bring semantic drift
due to the vector space discrepancy of vision and language. Collell
et al. [6] propose to learn a mapping function from text to vision.
The outputs of the mapping themselves are used in the multimodal
representations. Still, the mapping function is a bottleneck when
the text and image are not relevant. In our approach, we propose to
leverage the object labels as embeddings, and we bridge the vision
and language by concatenating object embeddings with textual
representations.

2.3 Attention Mechanism
Attention mechanism is widely used in a variety of deep learning
tasks [2, 23, 28]. For multimodal NER (MNER) task, Moon et al.
[18] propose a modality attention which focus on image, word
and character level representation. Lu et al. [16] propose a visual
attention module which take the salient visual regions into account.
Zhang et al. [28] propose an adaptive co-attention model where text
and image attentions are captured simultaneously. However, these
attention models learn inter-correlations between two modalities
(image and text), and neglect the intra-connections of visual objects
or textual entities. This become a bottleneck for understanding
fine-grained relationships of multimodal features. In contrast, we
propose a dense co-attention mechanism to establish the complete
interaction between visual objects and textual entities, so as to
improve the NER performance.

3 THE PROPOSED METHOD
In this section, we present a novel neural model which combines
object-level image representations and character-level textual rep-
resentations. The overall architecture is shown as Figure 3. Our
model is built upon a classic Bi-LSTM-CRF network, the object-
aware gated attention module is applied before the CRF layer. For
each input image, we extract objects with an object detector. The
fine-grained object level features are utilized to assist recognizing
different type of entities. The image features are in different vec-
tor space with textual embeddings, so we utilize the object labels.
The object labels are transformed into object embeddings which
are then fused with textual representations. We design a dense co-
attention module to learn the inter- and intra-connections between
visual objects and textual entities.

3.1 Feature Extractor
3.1.1 Visual Feature Extractor. Object-level features are considered
as bottom-up attention in several multimodal tasks [2]. Different
from previous multimodal representation methods, we bridge the
vision and language by transforming object labels into object em-
beddings. In order to extract the objects from images, we utilize
the pre-trained Mask RCNN [10] object detection model to recog-
nize the objects in images. In most cases, only the salient objects
of images are related to the entities mentioned in tweets. So we
only consider the top K objects with the higher object classification
scores as object labels , denoted as 𝑣 = (𝑣0, 𝑣1, . . . , 𝑣𝑘 ). Then, the
object labels are transformed into object embeddings:

ṽ𝑖 = e𝑣 (𝑣𝑖 ), (1)

where e𝑣 denotes an object embedding lookup table. Therefore, a
object embedding can be represented as ṽ = {ṽ0, ṽ1, . . . , ṽ𝑘 }.

We map the object embeddings into new vectors with the same
dimensions as the textual vector using a single layer perceptron for
calculation convenience:

v = 𝑡𝑎𝑛ℎ(𝑊𝐼 ṽ + 𝑏𝐼 ), (2)

where W𝐼 and b𝐼 are trainable parameters. The object embeddings
are initialized with pre-trained word embeddings.

3.1.2 Textual Feature Extractor. Following the success of Lample
et al. [15], Ma and Hovy [17] , we represent each word in a sentence
by combining character embedding into word embedding. Given an
input sentence with n words 𝑠 = (𝑤0,𝑤1, ...,𝑤𝑛), each input word
𝑤𝑖 is first embedded in latten space by word embedding:

x𝑤𝑖 = e𝑤 (𝑥𝑖 ), (3)

where e𝑤 denotes a word embedding lookup table. We use pre-
trained word embedding (the same setting as Zhang et al. [28]) to
initialize it.

We capture the orthographic and morphological features of the
word by integrating character representations. Previous works on
social media posts have demonstrated that character embeddings
can alleviate the serious OOV problem[18]. Denoting the repre-
sentation of characters within 𝑤𝑖 as x𝑐𝑖 , the embedding of each
character within word𝑤𝑖 is denoted as e𝑐 (𝑐 𝑗 ). e𝑐 is the character
embedding lookup which is initialized randomly. Then we feed
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Figure 3: The Overall Architecture of Our Model. Our Model Combines the Object-level Visual Features and Character-level
Word Representations to Predict Entities. A Dense Co-attention Module is Applied to Find Relevant Objects and Entities and
Filter Out Irrelevant Visual Information.

them into a bidirectional LSTM layer to learn hidden states. The for-
ward and backward outputs are concatenated to construct character
representations:

x𝑐𝑖 = [
−→
h𝑐𝑖 ;
←−
h𝑐𝑖 ], (4)

where
←−
h𝑐
𝑖
and
−→
h𝑐
𝑖
denote the forward and backward outputs of

bidirectional LSTM, respectively.
The total word representation x𝑡

𝑖
is obtained as the concatenation

of word embeddings x𝑤
𝑖
and character embeddings x𝑐

𝑖
:

x𝑡𝑖 = [x
𝑤
𝑖 ; x

𝑐
𝑖 ] . (5)

We pass the total word representation x𝑡
𝑖
into a bi-directional

LSTM to learn the contextual information. Specifically, the hidden
state of bidirectional LSTM can be expressed as follows:

−→
h 𝑡𝑖 =

−−−−→
LSTM(x𝑡𝑖 ,

−→
h 𝑡𝑖−1), (6)

←−
h 𝑡𝑖 =

←−−−−
LSTM(x𝑡𝑖 ,

←−
h 𝑡𝑖−1), (7)

h𝑡𝑖 = [
−→
h 𝑡𝑖 ;
←−
h 𝑡𝑖 ] . (8)

We feed x𝑡
𝑖
into a Dropout layer to prevent overfitting.

−→
h 𝑡
𝑖
and

←−
h 𝑡
𝑖
denote the 𝑖-th forward and backward hidden state of Bi-LSTM

layer, respectively. Notationally, the final textual representations
extracted from a sentence is denoted as h𝑡

𝑖
.

3.2 Dense Co-attention Layer
As our multimodal network is built upon the BiLSTM and CRF
framework, we design a dense co-attention layer module which
combines the visual and textual features into predicting entities. The
dense co-attention layer module learns to model the self-attention
of objects or entities, as well as the guided attention between objects
and entities, and produces a vector representation with aggregated
knowledge among image and text. As shown in Figure 3, our dense

co-attention layer module gets input from visual object represen-
tations and textual representations which as mentioned in last
section.

One sentence may contain multiple entities with different entity
types. For example, “Neil Patrick Harris” and “Oscars” are the names
of person and award, respectively, in Figure 2. However, one can
know that “Neil Patrick Harris” is a person name with the guiding
objects “person”, and “Oscars” with “tie and trophy”. We apply
dense co-attention mechanism here to find out the correlations of
entities and visual objects, and the inner connections of objects or
entities.

The dense co-attention layer is a variant of Deep Modular Co-
Attention Networks[27], and is a modular composition of the self
attention (SA) unit and the guided-attention (GA) unit. SA and GA
are inspired by the scaled dot-product attention proposed in [25].

The input of scaled dot-product attention consists of queries
of dimension 𝑑 , keys of dimension 𝑑𝑘𝑒𝑦 and values of dimension
𝑑𝑣𝑎𝑙𝑢𝑒 . For simplicity, we set 𝑑𝑘𝑒𝑦 and 𝑑𝑣𝑎𝑙𝑢𝑒 to the same number
𝑑 . We can calculate the attended feature as follows:

𝐹 = 𝐴(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑
)𝑉 , (9)

where, queries 𝑄 ∈ R𝑚×𝑑 , keys 𝐾 ∈ R𝑛×𝑑 and values 𝑉 ∈ R𝑛×𝑑 .
The attended feature 𝐹 ∈ R𝑚×𝑑 is obtained by weighted summation
over all values 𝑉 with respect to the attention learned form 𝑄 and
𝐾 .

And we apply multi-head attention to further improve the rep-
resentation capacity of the attended features. We firstly map the
queries, keys and values to ℎ different spaces, which means ℎ paral-
leled ’heads’. Then, in each space, we apply an independent scaled
dot-product attention function. Finally, we concatenate all head
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results as follows:

𝐹 =𝑀𝐴(𝑄,𝐾,𝑉 ) = [ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑ℎ]𝑊 0, (10)

ℎ𝑒𝑎𝑑 𝑗 = 𝐴(𝑄𝑊𝑄

𝑗
, 𝐾𝑊𝐾

𝑗 ,𝑉𝑊
𝑉
𝑗 ), (11)

where,𝑊𝑄

𝑗
,𝑊𝐾

𝑗
,𝑊𝑗𝑉 ∈ R𝑑×𝑑ℎ are the projection matrices for the

𝑗-th head, and𝑊𝑜 ∈ Rℎ∗𝑑ℎ×𝑑 . 𝑑ℎ = 𝑑/ℎ is the dimension size of the
output features from each head.

The self-attention (SA) unit is composed of a multi-head atten-
tion and a feed-foward layer. Firstly, the multi-head attention layer
takes one group input feature 𝑋 ∈ R𝑚×𝑑𝑥 as query, keys and val-
ues. Then, the output features of the multi-head attention layer are
transformed by two fully-connected layers with ReLU activation
and dropout (FC(4d)-RELU-Dropout(0.1)-FC(d)). Moreover, to fa-
cilitate optimization, we apply the residual connection[11] with
normalization layer[3] to the outputs of the two layers.

The guide-attention (GA) unit has the same architecture as SA,
while has two group input features 𝑋 ∈ R𝑚×𝑑𝑥 and 𝑌 ∈ R𝑛×𝑑𝑦 .
And 𝑋 is input as queries, while 𝑌 is input as keys and values.

Then, we use the SA and GA attention units to build our dense co-
attention layer module. For each word in the sentence, the textual
representations h𝑡 ∈ R𝑛×𝑑𝑡 are obtained by Equation (8) and the
objects matrix v ∈ R𝑘×𝑑𝑣 is obtained by Equation (2). We first input
the textual representations and object matrix into independent
SA unit to capture the inner connections of objects or entities,
respectively. Then, the output features of textual SA are input to
GA as queries, and the output features of object SA are input to GA
as keys and values. The GA unit canmodel the pairwise relationship
between the each paired word and object:

h𝑡𝑆𝐴 = 𝑆𝐴(h𝑡 , h𝑡 , h𝑡 ), (12)
h𝑣𝑆𝐴 = 𝑆𝐴(v, v, v), (13)

h𝑣𝐺𝐴 = 𝐺𝐴(h𝑡𝑆𝐴, h
𝑣
𝑆𝐴, h

𝑣
𝑆𝐴) (14)

where, h𝑣
𝐺𝐴
∈ R𝑛×𝑑𝑣 is the output features of GA unit, which

contain the attended object features for each word in the sentence.
Finally we add the textual representation from LSTM and the output
features of GA unit to generate the multimodal representation:

m = h𝑡 + h𝑣𝐺𝐴 . (15)

where m denotes the multimodal representation of the input sen-
tence.

3.3 CRF Layer
Label dependencies are helpful for named entity recognition task.
After obtain themultimodal representation fromDense Co-attention
Layer, we apply a conditional random field (CRF) layer to model
the label dependencies and predict the NER label sequences.

For an input sentence 𝑠 = (𝑤0,𝑤1, . . . ,𝑤𝑛), we get the model
prediction score matrix by applying the single feed forward layer
to the multimodal representation:

q = mW𝑞, (16)

whereW𝑞 is a parameter matrix, q is the score matrix, and q𝑖, 𝑗 is
the score of the 𝑗-th label of the 𝑖-th word in the sentence. For a
possible sequence of predictions:

𝑦 = (𝑦0, 𝑦1, . . . , 𝑦𝑛), (17)

the CRF layer will take the model prediction score matrix and the
dependencies among labels to calculate the score of 𝑦:

𝜋 (𝑠,𝑦) =
𝑛∑
𝑖=0

q𝑖,𝑦𝑖 +
𝑛−1∑
𝑖=0

A𝑦𝑖 ,𝑦𝑖+1 , (18)

where A is the parameter matrix of transition scores used to modal
the dependencies among labels, and A𝑖, 𝑗 represents the score of a
transition from the label 𝑖 to label 𝑗 . Then, we can get the proba-
bility for the sequence 𝑦 by applying a softmax to all possible tag
sequences:

𝑝 (𝑦 | 𝑠) = 𝑒𝜋 (𝑠,𝑦)∑
�̂�∈𝑌 (𝑠) 𝑒𝜋 (𝑠,�̂�)

, (19)

where 𝑌 (𝑠) is the set of all possible label sequences for the input
sentence 𝑠 . During training phase, we maximize the log-probability
of the correct label sequence:

𝐿 = −𝑙𝑜𝑔𝑝 (𝑦 | 𝑠) . (20)

During decoding, the label sequence𝑦∗ with the highest conditional
probability is selected as output label sequence:

𝑦∗ = argmax
�̂�∈𝑌 (𝑠)

𝑝 (𝑦 | 𝑠) (21)

4 EXPERIMENT SETTINGS
4.1 Dataset
To provide empirical evidence for effectiveness of our model, we
evaluate our method on a multimodal social media dataset from
Twitter. The dataset is constructed by Zhang et al. [28]. To the best
of our knowledge, it is the only available multimodal named entity
recognition dataset online. It contains 8257 tweets posted by 2116
users. Each tweet includes a sentence and an image. We split the
dataset into training, development and testing parts following the
same setting as Zhang et al. [28]. The entity types in the dataset are
Person, Location, Organization and Misc. Especially, the MISC
category contains “award”, “project”, “sports” etc. The statistics of
each entity type are listed in Table 1.

Table 1: The Statistics of Each Entity Type in the Twitters
Dataset.

Category Train Dev Test Total

Person 2217 552 1816 4583
Location 2091 522 1697 4308

Organization 928 247 839 2012
Misc 940 225 726 1881

Total Entity 6176 1546 5078 12784

4.2 Baseline Methods
We compare our methods with several state-of-the-art methods.
Our experiments mainly consider two groups of models: previous
state-of-the-art methods and the variants of our methods.
Previous State-of-the-artMethods: comparedwithNER in newswire
domain, there are much fewer approaches concerning about social
media domain.
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Table 2: The Overall Performance of Our Models and Other State-of-the-art Methods. The Second Part is the Variants of Our
Methods. Results on Rows where the Model Name is Marked with a ‡ Symbol are Reported as Published, All Other Numbers
have been Computed by Us. Our Models Outperform Other Methods in All Metrics. * Indicates the Difference Against the F1
of Our Baseline Variant (OCM) is Statistically Significant by One-Tailed Paired 𝑡-test with 𝑝 < 0.01.

Model Prec. Recall F1

Stanford NER [8]‡ 60.98 62.00 61.48
T-NER [20]‡ 69.54 68.65 69.09

CNN+LSTM+CRF [17]‡ 66.24 68.09 67.15
MNER-MA [18] 72.33 63.51 67.63

VAM [16] 69.09 65.79 67.40
AdapCoAtt Model [28]‡ 72.75 68.74 70.69

BERT-NER [7] 70.65 73.29 71.87

OCM (Object + Character) 72.71 70.95 71.82
OCGA (Object + Character + GA) 72.22 72.29 72.26*

OCSGA (Object + Character + SA + GA) 74.71 71.21 72.92*

• Stanford NER: Stanford NER is a widely used named entity
recognition tool. It was proposed by Finkel et al. [8].
• T-NER: T-NER [20] is a method concerning about named
entity recognition in tweets. T-NER exploits Freebase dictio-
naries as a source of distant supervision.
• CNN+LSTM+CRF: The model proposed by Ma and Hovy
[17] is a traditional method in named entity recognition task
which only considers the textual information.
• AdapCoAtt Model: Zhang et al. [28] proposed an adaptive
co-attention network which combines the whole image fea-
tures (rather than object features) and textual features in the
Twitter dataset.
• MNER-MA: MNER-MA is a multimodal NER model pro-
posed by moon et al. Moon et al. [18], which incorporates
visual information with a modality attention module. Since
they did not provide the data and code used in their paper,
we reimplement their model following the same settings and
validate on the Twitter dataset.
• VAM: The visual attention model Lu et al. [16] is another
neural model for multimodal NER task. This model is com-
posed by a BiLSTM-CRF model and a designed visual atten-
tion model. Also, we reimplement their model following the
same settings of their paper since they did not provide the
code and data.
• BERT-NER: To show the effectiveness of combining object-
level features, we compare our model with contextual lan-
guage models. We use the BERT BASE model Devlin et al.
[7] and fine-tuning in the Twitter dataset.

Variants of Our Methods: We set ablation experiments to evalu-
ate the contributions of each component. For fair comparison, we
assign the same parameter settings for each model.

• OCM(Object + Character): This model is a variant of our
model without the dense co-attention layer. We concate-
nate the object embeddings with textual representations for
multimodal representations.

• OCGA(Object + Character + GA): This model is also a
variant of our model without the self-attention unit in the
dense co-attenion layer.
• OCSGA(Object + Character + SA + GA): The complete
model which combines dense co-attention network (self-
attention and guide attention) to model the correlations
between visual objeccts and textual entities and the inner
connections of objects or entities.

4.3 Parameter Settings
Our model is implemented by PyTorch framework1 2. To initialize
the word embeddings used in our model, we use the Glove pre-
trained word embeddings, and the dimension is set to 200. The
object embeddings are also set to 200 dimension and initialized
with the pretrained word embeddings. Our model is trained with
an SGD optimizer, where we set batch size for 10 and a learning
rate for 0.008. Our dropout rate is 0.5 and the learning rate decay is
0.05. The number of objects is tuned from 1 to 5, and we gain the
best result when setting it to 4. The number of attention heads in
multi-head attention set to 2.

5 RESULTS AND DISCUSSION
5.1 Overall Results
We conduct our experiments on the Twitter dataset. Table 2 shows
the overall results on Twitter test set. The first part of Table 2 is the
performance of previous state-of-the-art methods. All the variants
of our methods outperform previous works in precision and F1
values.

Ablation Study: The second part of this table is the perfor-
mance of our method and its variants. We achieve an improvement
of 5.77% in F1 value compared to the method proposed by Ma and
Hovy [17]. The method proposed by Ma and Hovy [17] is a baseline
of our model without visual object features. This indicates that
combining the visual information with textual information is useful
1https://pytorch.org/
2Code is available at https://github.com/softhuafei/Pytorch-implementation-for-
OCSGA
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Figure 4: The Results of Our Method (OCSGA) Comparing to CNN+LSTM+CRF [17] and AdapCoAtt Model [28] on the Twitter
Test Set. Objects from Images are Detected in the Left Column, We Present the NER Results with Related Objects in the Right
Column. The GroundTruth Labels are in Red and the Detected Objects are in Green. Our Model Extracts Named Entities
Precisely When Named Entities are Related to Visual Objects.

in recognizing entities of social media texts. The state-of-the-art
multimodal NER methods: MNER-MA [18], VAM [16] and Adap-
CoAtt Model [28], outperform the textual baseline by considering
the image-level features. However, when we transform the visual
representation into object embeddings, our models outperform the
method proposed by Zhang et al. [28] by 2.23%. The fine-grained
object embeddings perform better than full image representations
because we can extract different types of entities with the guiding of
relevant objects. When we add the dense co-attention network mod-
ule into our architecture, we gain the best Precision, Recall and F1
values. Our complete model achieves an F1 value of 72.92% and out-
performs other state-of-the-art methods with a large margin (2.23
percentage’s improvement in F1 scores). The dense co-attention
network is designed to find the correlations between visual objects
and entities, as well as the inner connections of objects or entities,
so that our model can focus on the valuable visual objects. We also
compare our model with pre-trained language model BERT-NER[7].
Our variant model OCM gains comparable results against BERT-
NER, and we show that with the Dense Co-attention Layer, our
model can outperform the BERT-NER in Precision and F1 values.

Performance on Categories: We also report our results in
all four categories (Table 3). Our final method gains the highest
F-score value in all the four categories and outperforms two state-
of-the-art systems in social media NER [20, 28]. Interestingly, our
model achieves a higher degree of improvement in ORG and MISC
categories. ORG and MISC entities are those covering abundant
visual information. For example, we can extract the ORG entities
with objects such as “chair, tv and billboard”. The MISC category,
as another example, contains “award” which can be identified by
objects such as “tie and trophy”. We evaluate the effectiveness of
object representations in the Case Study section.

Table 3: Our Results on Four Categories Compared to T-NER
[20] and Adap. [28] on the Twitter Test Set.

Category Our Model (OCSGA) T-NER Adap.
Prec. Recall F1 F1 F1

PER 82.83 86.62 84.68 83.64 81.98
LOC 79.88 80.02 79.95 76.18 78.95
ORG 62.75 51.61 56.64 50.26 53.07
MISC 45.74 34.71 39.47 34.56 34.02

Overall 74.71 71.21 72.92 69.09 70.69

5.2 Parameter Sensitivity
In this section, we evaluate our model on different settings of the
parameters. We are concerned about the impact of Dropout because
it is demonstrated as effective in most NER tasks. Specifically, the
number of objects is also important in producing a better result.

Table 4: The Performance (F1 Value) of Our Model on the
Twitter Test Set with and Without Dropout.

Dropout Overall PER LOC ORG MISC

No 71.49 83.64 78.30 54.20 33.90
Yes 72.92 84.68 79.95 56.64 39.47

Dropout is a strong strategy in avoiding over-fitting in train-
ing periods. We show the results of our model with and without
Dropout strategy in Table 4. Our model gains the state-of-the-art
performance with Dropout strategy and it demonstrates the effec-
tiveness of Dropout in NER tasks.

Table 5 describes the results of our proposed model influenced
by different object numbers. We have mentioned in Section 3 that
we pick up the top K detected objects according to the detection
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Table 5: The Performance of Our Proposed Model on the
Twitter Test Set Influenced by Different Object Numbers.

Object Num. Precision Recall F1

Top-1 74.41 70.72 72.52
Top-2 74.46 70.72 72.54
Top-3 75.02 70.66 72.77
Top-4 74.71 71.21 72.92
Top-5 74.56 70.60 72.53

possibility of each object in images. Our model gains the best per-
formance when setting the number of objects to 4. The results
demonstrate that the performance (F1 value) improves with the
increase of visual objects. Since the average number of entities is
less than 4, too many visual objects may bring noise (irrelevant
visual information) into the prediction of entities. That indicates a
proper number of visual objects can providemore effective semantic
information for predicting entities with multiple categories.

5.3 Case Study
Figure 4 shows the case study of comparing our method with
the CNN+LSTM+CRF [17] model and AdapCoAtt Model [28]. Our
method performs better in all the cases due to the leveraging of
visual objects. To evaluate the effectiveness of the usage of visual in-
formation, we compare our method to the CNN+LSTM+CRF model
which extracts entities only relying on textual representations. Our
model (OCSGA) extracts the MISC entity “Golf Classic” and the PER
entity “Davonta Burdine” correctly. However, the CNN+LSTM+CRF
model misses the two entities without the guidance of visual in-
formation. We think the object labels “sports ball” and “person”
contribute to the extraction of “Golf Classic” and “Davonta Burdine”
, respectively. Interestingly, our method identifies the PER entity
“Davonta Burdine” correctly although the irrelevant visual object
“truck” is extracted. We think the dense co-attention network mod-
ule helps our model to filter out the objects irrelevant to textual
entities.

On the right side of Figure 4, we compare our method with
AdapCoAtt Model [28] which utilizes the full-image features as
visual representations. Our method can identify the MISC entity
“Oscars” with the guiding of objects “trophy and tie” and extract
the correct entity type of “Blackhawks” with objects “skis and
snowboard”. However, the AdapCoAtt Model [28] cannot recognize
the entities correctly due to the ignorance of correspondence of
visual objects and entities.

6 CONCLUSION
In this paper, we propose a novel object-aware neural model that
combines visual and textual representations into predicting named
entities in social media posts. Our model takes the corresponding
relations of multiple visual objects and different textual entities into
consideration. The vision and language are bridged by transforming
the object labels into embeddings. Our dense co-attention module
can take the inter- and intra-connections between visual objects and
textual entities into account. The experimental results demonstrate

that our model outperforms other state-of-the-art methods in terms
of Precision, Recall and F values.

For future work, we plan to investigate the method of trans-
forming textual representations into visual vector space, which is
another way to tackle the space discrepancy of vision and language.
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